Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.214
Filter
Add more filters

Publication year range
1.
Mol Biol Rep ; 51(1): 323, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393680

ABSTRACT

BACKGROUND: Recently, lipase processing for biodiesel production has shown a global increase as it is considered a potential alternative clean-fuel source. The current study's objective is to investigate of lipolytic activity of lipase produced from different strains of Pseudomonas aeruginosa (P. aeruginosa) in biodiesel production using edible plant oils. The goal is to develop an efficient and cost-effective method for producing inexpensive and environmentally friendly biodiesel. METHODS AND RESULTS: Four P. aeruginosa isolates were obtained from different environmental sources (soil), phenotypically identified, and it was confirmed by the PCR detection of the 16SrRNA gene. The isolated P. aeruginosa strains were screened for lipase production, and the recovered lipase was purified. Besides, the lipase (lip) gene was detected by PCR, and the purified PCR products were sequenced and analyzed. The production of biofuel was conducted using gas chromatography among tested oils. It was found that castor oil was the best one that enhances lipase production in-vitro.


Subject(s)
Biofuels , Pseudomonas Infections , Humans , Pseudomonas aeruginosa/metabolism , Lipase/metabolism , Oils , Base Sequence , Plant Oils/chemistry
2.
Plant Biol (Stuttg) ; 26(2): 257-269, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38169134

ABSTRACT

Artemisia L. is the largest genus in the Asteraceae, and well known for its high medicinal value. The morphological features of Artemisia species are similar, making taxonomic identification and evolutionary research difficult. We sequenced chloroplast genomes of eight Artemisia species, all of which are common adulterants of A. argyi. We used novel genetic data and compared these data to the published A. argyi chloroplast genome in to develop molecular markers for species identification and reconstructing phylogenetic relationships between Artemisia species. The eight chloroplast sequences were highly similar in gene order, content, and structure, encoding a total of 114 genes (82 protein-coding genes, 28 tRNAs, and four rRNAs). All species harboured similar repeat sequences and simple sequence repeats (SSRs), ranging from 47 to 49 and 38 to 40 repeats, respectively. In addition, we identified five hypervariable regions (rpl32-trnL, rps16-trnQ, petN-psbM, trnE-rpoB, and atpA-trnR) and ten variable coding genes (ycf1, psbG, rpl36, psaC, psaI, accD, psbT, ndhD, ndhE, and psbH), which can be used to develop chloroplast molecular markers. Finally, phylogenetic reconstructions based on six datasets produced similar topologies, revealing A. argyi is closely related to species often found as adulterants, as expected. Our research provides valuable new information on the evolution and phylogenetic relationships between Artemisia chloroplast genomes and identifies valuable molecular makers to distinguish it from closely related species.


Subject(s)
Artemisia , Genome, Chloroplast , Phylogeny , Artemisia/genetics , Genome, Chloroplast/genetics , Base Sequence
3.
Plant J ; 118(1): 171-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128038

ABSTRACT

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Base Sequence , DNA, Satellite , Gene Pool , Plant Breeding , Repetitive Sequences, Nucleic Acid/genetics , Vegetables/genetics , DNA , Centromere/genetics , Sugars
4.
Gene ; 893: 147931, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37898453

ABSTRACT

The medicinal plant of the genus Stephania holds significant economic importance in the pharmaceutical industry. However, accurately classifying and subdividing this genus remains a challenge. Herein, the chloroplast (cp) genomes of Stephania and Cyclea were sequenced, and the primary characteristics, repeat sequences, inverted repeats regions, simple sequence repeats, and codon usage bias of 17 species were comparatively analyzed. Twelve markers were identified through genome alignment and sliding window analysis. Moreover, a molecular clock analysis revealed the divergence between subgenus (subg.) Botryodiscia and the combined Cyclea, subg. Stephania and Tuberiphania during the early Oligocene epoch. Notably, the raceme-type inflorescence represents the ancestral state of the Stephania and Cyclea. The genetic relationships inferred from the cp genome and protein-coding genes exhibited similar topologies. Additionally, the paraphyletic relationship between the genera Cyclea and Stephania was confirmed. Bayesian inference, maximum likelihood, and neighbor-joining trees consistently showed that section Tuberiphania and Transcostula were non-monophyletic. In conclusion, this research provides valuable insights for further investigations into species identification, evolution, and phylogenetics within the Stephania genus.


Subject(s)
Genome, Chloroplast , Phylogeny , Bayes Theorem , Base Sequence , Repetitive Sequences, Nucleic Acid , Microsatellite Repeats
5.
Appl Environ Microbiol ; 89(12): e0030823, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38009923

ABSTRACT

IMPORTANCE: While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.


Subject(s)
Solanum tuberosum , Streptomyces , Genomics , Streptomyces/genetics , Base Sequence , Plant Diseases
6.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003320

ABSTRACT

Hypericum perforatum (St. John's Wort) is a medicinal plant from the Hypericaceae family. Here, we sequenced the whole chloroplast genome of H. perforatum and compared the genome variation among five Hypericum species to discover dynamic changes and elucidate the mechanisms that lead to genome rearrangements in the Hypericum chloroplast genomes. The H. perforatum chloroplast genome is 139,725 bp, exhibiting a circular quadripartite structure with two copies of inverted repeats (IRs) separating a large single-copy region and a small single-copy region. The H. perforatum chloroplast genome encodes 106 unique genes, including 73 protein-coding genes, 29 tRNAs, and 4 rRNAs. Hypericum chloroplast genomes exhibit genome rearrangement and significant variations among species. The genome size variation among the five Hypericum species was remarkably associated with the expansion or contraction of IR regions and gene losses. Three genes-trnK-UUU, infA, and rps16-were lost, and three genes-rps7, rpl23, and rpl32-were pseudogenized in Hypericum. All the Hypericum chloroplast genomes lost the two introns in clpP, the intron in rps12, and the second intron in ycf3. Hypericum chloroplast genomes contain many long repeat sequences, suggesting a role in facilitating rearrangements. Most genes, according to molecular evolution assessments, are under purifying selection.


Subject(s)
Clusiaceae , Genome, Chloroplast , Hypericum , Hypericum/genetics , Clusiaceae/genetics , Base Sequence , Repetitive Sequences, Nucleic Acid , Phylogeny , Evolution, Molecular
7.
Front Immunol ; 14: 1267772, 2023.
Article in English | MEDLINE | ID: mdl-37868973

ABSTRACT

Background: Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods: The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results: We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion: These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.


Subject(s)
Crassostrea , Humans , Animals , Base Sequence , Amino Acid Sequence , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Crassostrea/metabolism , Tumor Suppressor Protein p53/genetics , HEK293 Cells , Cloning, Molecular , Tumor Necrosis Factors/metabolism , Recombinant Proteins/genetics , Apoptosis/genetics
8.
Nat Plants ; 9(8): 1236-1251, 2023 08.
Article in English | MEDLINE | ID: mdl-37563460

ABSTRACT

Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Domestication , Plant Breeding , Chromosome Mapping , Base Sequence
9.
Mar Biotechnol (NY) ; 25(5): 749-762, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37581865

ABSTRACT

MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3'UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.


Subject(s)
Bass , Circulating MicroRNA , MicroRNAs , Animals , Male , Female , Bass/genetics , MicroRNAs/genetics , Biomarkers , Base Sequence
10.
Vopr Virusol ; 67(6): 516-526, 2023 02 07.
Article in Russian | MEDLINE | ID: mdl-37264841

ABSTRACT

INTRODUCTION: A vaccine against hepatitis C has not yet been developed. Recombinant proteins and plasmids encoding hepatitis C virus (HCV) proteins, the components of candidate vaccines, induce a weak immune response and require the use of adjuvants. The aim of the work was to study the adjuvant action of an aqueous solution of fullerene C60 during immunization of mice with HCV recombinant protein NS5B (rNS5B) that is an RNA-dependent RNA polymerase, or with NS5B-encoding pcNS5B plasmid. MATERIALS AND METHODS: An aqueous solution of dispersed fullerene (dnC60) was obtained by ultrafiltration. C57BL/6 mice were immunized with rNS5B subcutaneously, pcNS5B intramuscularly mixed with different doses of dnC60 three times, then the humoral and cellular response to HCV was evaluated. RESULTS: Mice immunization with rNS5B in a mixture with dnC60 at doses of 250 g/mouse significantly induced humoral response: a dose-dependent increase in IgG1 antibody titers was 720 times higher than in the absence of fullerene. There was no increase in the cellular response to rNS5B when administered with dnC60. The humoral response to DNA immunization was weak in mice of all groups receiving pcNS5B. The cellular response was suppressed when the plasmid was injected in a mixture with dnC60. CONCLUSIONS: Dispersed fullerene dnC60 is a promising adjuvant for increasing the immunostimulating activity of weakly immunogenic proteins including surface and other HCV proteins, important for a protective response. Further research is needed to enhance the ability of dnC60 to boost the cellular immune response to the components of the candidate vaccine.


Subject(s)
Fullerenes , Hepatitis C , Vaccines, DNA , Viral Hepatitis Vaccines , Mice , Animals , Hepacivirus , Fullerenes/pharmacology , Fullerenes/metabolism , Base Sequence , Amino Acids/genetics , Amino Acids/metabolism , Amino Acids/pharmacology , Mice, Inbred C57BL , Adjuvants, Immunologic/genetics , Immunity, Cellular , Recombinant Proteins/genetics , Mice, Inbred BALB C , Vaccines, DNA/genetics , Vaccines, DNA/pharmacology , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/pharmacology
11.
Sci Rep ; 13(1): 8654, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244945

ABSTRACT

Cultivated beets (Beta vulgaris ssp. vulgaris) constitute important crop plants, in particular sugar beet as an indispensable source of sucrose. Several species of wild beets of the genus Beta with distribution along the European Atlantic coast, Macaronesia, and throughout the Mediterranean area exist. Thorough characterization of beet genomes is required for straightforward access to genes promoting genetic resistance against biotic and abiotic stress. Analysing short-read data of 656 sequenced beet genomes, we identified 10 million variant positions in comparison to the sugar beet reference genome RefBeet-1.2. The main groups of species and subspecies were distinguishable based on shared variation, and the separation of sea beets (Beta vulgaris ssp. maritima) into a Mediterranean and an Atlantic subgroup as suggested by previous studies could be confirmed. Complementary approaches of variant-based clustering were employed based on PCA, genotype likelihoods, tree calculations, and admixture analysis. Outliers suggested the occurrence of inter(sub)specific hybridisation, independently confirmed by different analyses. Screens for regions under artificial selection in the sugar beet genome identified 15 Mbp of the genome as variation-poor, enriched for genes involved in shoot system development, stress response, and carbohydrate metabolism. The resources presented herein will be valuable for crop improvement and wild species monitoring and conservation efforts, and for studies on beet genealogy, population structure and population dynamics. Our study provides a wealth of data for in-depth analyses of further aspects of the beet genome towards a thorough understanding of the biology of this important complex of a crop species and its wild relatives.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Crops, Agricultural/genetics , Base Sequence , Genomics , Sugars
12.
Dokl Biol Sci ; 508(1): 55-62, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37186047

ABSTRACT

Phytophthora infestans is the oomycete that causes potato blight, an important disease. The potato spindle tuber viroid (PSTVd) is a dangerous pathogen of many plants, including potato. We have previously shown that PSTVd can be transmitted from infected potato plants into the Ph. infestans mycelium, replicated within the mycelium, and then transmitted to other potato plants upon their infection with Ph. infestans in laboratory conditions. The objective of this work was to check the hypothesis that PSTVd transmission, preservation, and replication in Ph. infestans are possible to occur in natural conditions during long-term coevolution of the host and pathogen in the Solanum spp.-Ph. infestans system. A screening test for PSTVd was performed in 111 natural Ph. infestans isolates obtained from potato plants, which represented various cultivars, had signs of potato blight, and were collected from industrial potato fields of the Moscow, Vologda, and Bryansk regions and breeding and variety test plots of the St. Petersburg and Moscow regions in 2020 and 2022. Using RT-PCR with PSTVd-specific primers, 42 Ph. infestans isolates collected in 2020 were tested after five passages and 69 Ph. infestans isolates collected in 2022, after a single passage on rye agar. Diagnostic amplicons were detected in 8 and 50 isolates, respectively. Some of the amplicons were visually assessed as minor amplification products, apparently resulting from nonspecific priming on a host Ph. infestans gene, which codes for a hypothetical protein-coding mRNA in Ph. infestans and other oomycetes. Eight amplicons were sequenced to verify the PSTVd presence in Ph. infestans isolates. Three amplicons corresponded to the complete PSTVd genome and five, to its part (~260 bp). The nucleotide sequences of cloned amplification products were identified to species in the BLAST system and deposited in GenBank. The amplicons obtained with the PSTVd-specific primers were identified as PSTVd sequences in all Ph. infestans isolates examined. The majority of the nucleotide sequences were phylogenetically related to BLAST sequences of PSTVd strains originating from Russia; several strains showed similarity to strains from other countries (France, China, and West African countries). The results demonstrate that PSTVd was for the first time detected in natural (field) Ph. infestans isolates and offer new opportunities for studying the intricate multilevel host-parasite interactions.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Viroids , Viroids/genetics , Phytophthora infestans/genetics , Plant Breeding , Base Sequence , Plant Diseases/genetics
13.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1229-1237, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005807

ABSTRACT

Eleutherococcus senticosus is one of the Dao-di herbs in northeast China. In this study, the chloroplast genomes of three E. senticosus samples from different genuine producing areas were sequenced and then used for the screening of specific DNA barcodes. The germplasm resources and genetic diversity of E. senticosus were analyzed basing on the specific DNA barcodes. The chloroplast genomes of E. senticosus from different genuine producing areas showed the total length of 156 779-156 781 bp and a typical tetrad structure. Each of the chloroplast genomes carried 132 genes, including 87 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes were relatively conserved. Sequence analysis of the three chloroplast genomes indicated that atpI, ndhA, ycf1, atpB-rbcL, ndhF-rpl32, petA-psbJ, psbM-psbD, and rps16-psbK can be used as specific DNA barcodes of E. senticosus. In this study, we selected atpI and atpB-rbcL which were 700-800 bp and easy to be amplified for the identification of 184 E. senticosus samples from 13 genuine producing areas. The results demonstrated that 9 and 10 genotypes were identified based on atpI and atpB-rbcL sequences, respectively. Furthermore, the two barcodes identified 23 genotypes which were named H1-H23. The haplotype with the highest proportion and widest distribution was H10, followed by H2. The haplotype diversity and nucleotide diversity were 0.94 and 1.82×10~(-3), respectively, suggesting the high genetic diversity of E. senticosus. The results of the median-joining network analysis showed that the 23 genotypes could be classified into 4 categories. H2 was the oldest haplotype, and it served as the center of the network characterized by starlike radiation, which suggested that population expansion of E. senticosus occurred in the genuine producing areas. This study lays a foundation for the research on the genetic quality and chloroplast genetic engineering of E. senticosus and further research on the genetic mechanism of its population, providing new ideas for studying the genetic evolution of E. senticosus.


Subject(s)
DNA Barcoding, Taxonomic , Eleutherococcus , Eleutherococcus/genetics , Base Sequence , Chloroplasts/genetics , Genetic Variation , Phylogeny
14.
BMC Genomics ; 24(1): 197, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37046210

ABSTRACT

BACKGROUND: Peepal/Bodhi tree (Ficus religiosa L.) is an important, long-lived keystone ecological species. Communities on the Indian subcontinent have extensively employed the plant in Ayurveda, traditional medicine, and spiritual practices. The Peepal tree is often thought to produce oxygen both during the day and at night by Indian folks. The goal of our research was to produce molecular resources using whole-genome and transcriptome sequencing techniques. RESULTS: The complete genome of the Peepal tree was sequenced using two next-generation sequencers Illumina HiSeq1000 and MGISEQ-2000. We assembled the draft genome of 406 Mb, using a hybrid assembly workflow. The genome annotation resulted in 35,093 protein-coding genes; 53% of its genome consists of repetitive sequences. To understand the physiological pathways in leaf tissues, we analyzed photosynthetically distinct conditions: bright sunny days and nights. The RNA-seq analysis supported the expression of 26,479 unigenes. The leaf transcriptomic analysis of the diurnal and nocturnal periods revealed the expression of the significant number of genes involved in the carbon-fixation pathway. CONCLUSIONS: This study presents a draft hybrid genome assembly for F. religiosa and its functional annotated genes. The genomic and transcriptomic data-derived pathways have been analyzed for future studies on the Peepal tree.


Subject(s)
Ficus , Transcriptome , Gene Expression Profiling , Genomics , Base Sequence , Molecular Sequence Annotation
15.
PLoS One ; 18(3): e0283441, 2023.
Article in English | MEDLINE | ID: mdl-36989331

ABSTRACT

The phylogeny of the Upside-Down Jellyfish (Cassiopea spp.) has been revised multiple times in its history. This is especially true in the Florida Keys, where much of the Cassiopea stock for research and aquarium trade in the United States are collected. In August 2021, we collected 55 Cassiopea medusae at eight shallow water sites throughout the Florida Keys and sequenced COI, 16S, and 28S genes. Mitochondrial genes demonstrate that the shallow waters in Florida are inhabited by both Cassiopea xamachana and a non-native Cassiopea andromeda lineage, identified in multispecies assemblages at least thrice. While C. xamachana were present at all sites, the C. andromeda-mitotype individuals were present at only a minority of sites. While we cannot confirm hybridization or lack thereof between the C. xamanchana and C. andromeda lineages, these previously unknown multispecies assemblages are a likely root cause for the confusing and disputed COI-based species identities of Cassiopea in the Florida Keys. This also serves as a cautionary note to all Cassiopea researchers to barcode their individuals regardless of the location in which they were collected.


Subject(s)
Cnidaria , Scyphozoa , Humans , Animals , Florida , Phylogeny , Base Sequence
16.
Genes (Basel) ; 14(2)2023 02 12.
Article in English | MEDLINE | ID: mdl-36833396

ABSTRACT

Wild medicinal plants are the main source of active ingredients and provide a continuous natural source for many folk medicinal products, a role that is important for society's health with an impressive record of utilization. Thus, surveying, conserving, and precisely identifying wild medicinal plants is required. The current study aimed to precisely identify fourteen wild-sourced medicinal plants from southwest Saudi Arabia, within the Fifa mountains area located in Jazan province, using the DNA barcoding technique. Two DNA regions (nuclear ITS and chloroplast rbcL) were sequenced and analyzed for the collected species using BLAST-based and phylogeny-based identification methods. Based on our analysis, ten of the fourteen species were successfully identified by DNA barcoding, five were identified as morphologically inspected, and three were morphologically indifferent. The study was able to distinguish some key medicinal species and highlight the importance of combining morphological observation with DNA barcoding to ensure the precise identification of wild plants, especially if they are medicinally relevant and associated with public health and safety usage.


Subject(s)
DNA Barcoding, Taxonomic , Plants, Medicinal , DNA, Plant/genetics , Saudi Arabia , Plants, Medicinal/genetics , Base Sequence
17.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36794889

ABSTRACT

Leek yellow stripe virus (LYSV) is one of the most important potyviruses, associated with garlic throughout the world, including India. LYSV causes stunting and yellow streaks in garlic and leek leaves and with other coinfecting viruses leading to severe symptom expression and yield reduction. In this study, we have made the first reported attempt to produce specific polyclonal antibodies to LYSV using expressed recombinant coat protein (CP), which would be useful for screening and routine indexing of the garlic germplasm. The CP gene was cloned, sequenced, and further subcloned in pET-28a(+) expression vector, which yielded ∼35 kDa fusion protein. The fusion protein was obtained in insoluble fraction after purification and its identity was confirmed by SDS-PAGE and western blotting. The purified protein was used as immunogen for production of polyclonal antisera in New Zealand white rabbit. Antisera raised, was able to recognize the corresponding recombinant proteins in western blotting, immunosorbent electron microscopy and dot immunobinding assay (DIBA). Developed antisera to LYSV (titer 1:2000) was used for screening of 21 garlic accessions in antigen coated plate enzyme-linked immunosorbent assay (ACP-ELISA) and 16 accessions were found positive for LYSV, indicating its widespread presence within the collection tested. To the best of our knowledge, this is the first report of a polyclonal antiserum against the in-vitro expressed CP of LYSV and its successful application in diagnosis of LYSV in garlic accessions in India.


Subject(s)
Garlic , Potyvirus , Animals , Rabbits , Onions , Escherichia coli/genetics , Base Sequence , Recombinant Proteins/genetics , Garlic/genetics , Potyvirus/genetics , Immune Sera/genetics
18.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194905, 2023 03.
Article in English | MEDLINE | ID: mdl-36581245

ABSTRACT

Human protein Yin Yang 1 (YY1) controls the transcription of hundreds of genes both positively and negatively through interactions with a wide range of partner proteins. Results presented here from proteolytic sensitivity, calorimetry, circular dichroism, fluorescence, NMR, size-exclusion chromatography, SELEX, and EMSA show that purified YY1 forms dimers via its disordered N-terminal region with strong zinc-ion concentration dependence. The YY1 dimer is shown to bind tandem repeats of a canonical recognition DNA sequence with high affinity, and analysis of human YY1 regulatory sites shows that many contain repeats of its recognition elements. YY1 dimerization may compete with partner protein interactions, making control by zinc ion concentration a previously unrecognized factor affecting YY1 gene regulation. Indeed, YY1 is known to be important in many pathogenic processes, including neoplasia, in which zinc ion concentrations are altered. The present results incentivize studies in vivo or in vitro that explore the role of zinc ion concentration in YY1-mediated gene expression.


Subject(s)
YY1 Transcription Factor , Zinc , Humans , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Zinc/metabolism , Dimerization , Gene Expression Regulation , Base Sequence
19.
Life Sci Alliance ; 6(1)2023 01.
Article in English | MEDLINE | ID: mdl-36316034

ABSTRACT

Cotranslational insertion of selenocysteine (Sec) proceeds by recoding UGA to a sense codon. This recoding is governed by the Sec insertion sequence (SECIS) element, an RNA structure on the mRNA, but size, location, structure determinants, and mechanism differ for Bacteria, Eukarya, and Archaea. For Archaea, the structure-function relation of the SECIS is poorly understood, as only rather laborious experimental approaches are established. Furthermore, these methods do not allow for quantitative probing of Sec insertion. In order to overcome these limitations, we engineered bacterial ß-lactamase into an archaeal selenoprotein, thereby establishing a reporter system, which correlates enzyme activity to Sec insertion. Using this system, in vivo Sec insertion depending on the availability of selenium and the presence of a SECIS element was assessed in Methanococcus maripaludis Furthermore, a minimal SECIS element required for Sec insertion in M. maripaludis was defined and a conserved structural motif shown to be essential for function. Besides developing a convenient tool for selenium research, converting a bacterial enzyme into an archaeal selenoprotein provides proof of concept that novel selenoproteins can be engineered in Archaea.


Subject(s)
Selenium , Selenocysteine , Selenocysteine/genetics , Archaea/genetics , 3' Untranslated Regions , Base Sequence , Selenoproteins/genetics
20.
Microbiol Res ; 268: 127277, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36577205

ABSTRACT

Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Molecular Docking Simulation , Base Sequence , Plant Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL